
IDV460
I N T E R A C T I V E D A T A V I Z S P R I N G 1 6

JAVASCRIPT INTRODUCTION

WHAT IS JAVASCRIPT?
Javascript is one of the
three core languages of
the web.

HTML is used to define
content (markup)

WHAT IS JAVASCRIPT?
Javascript is one of the
three core languages of
the web.

HTML is used to define
content (markup)

CSS is used for
presentation (style)

WHAT IS JAVASCRIPT?
Javascript is one of the
three core languages of
the web.

HTML is used to define
content (markup)

CSS is used for
presentation (style)

… and Javascript is used
for behavior
(programming)

Javascript is a scripting
language. It was written in 1995
by Brendan Eich (for Netscape).
JavaScript only works inside
another application: the web
browser. All (leading) browsers
have a JavaScript engine inside
them. The operating system runs
the web browser, the web
browser contains a page, and the
page contains the JavaScript.

HISTORY

HISTORY
Javascript’s syntax is
derived from programming
language called C, which
first appeared in 1972.
Despite the name similarity,
Javascript has almost
nothing to do with Java,
which is a different
programming language
altogether.

RUNS IN BROWSER
That means that for Javascript to
work on your page, the user must
have Javascript enabled in her
browser settings. Because of
security issues, many users used to
do this, though it has become much
more rare. You can disable your
own Javascript by going to Chrome’
Settings, then Advanced Settings,
then to Privacy, and finally to
Content Settings.

PROGRESSIVE  
ENHANCEMENT
The concept of progressive
enhancement, which grew out of a
web-design strategy called
“graceful degradation” holds that
your page should “work” and be
accessible to the highest possible
number of users.

PROGRESSIVE  
ENHANCEMENT
Core principles:
• Content should be accessible to
all browsers
• Semantic markup contains all
content
• Enhanced layout is provided by
externally linked CSS
• Enhanced behavior is provided by
unobtrusive, externally linked
JavaScript

GETTING STARTED
Because we already have a working
site with working pages, we can use
the basic template to build new
pages without having to re-invent
our basic structure or CSS.
We will start today by opening up
your index.html page, and removing
the changeable content. Save this
as template.html. We won’t be
adding this to our live site, but we
can use it to start any “blank”
exercises we undertake from this
point forward.

GETTING STARTED
Because we already have a working
site with working pages, we can use
the basic template to build new
pages without having to re-invent
our basic structure or CSS.
We will start today by opening up
your index.html page, and removing
the changeable content. Save this
as template.html. We won’t be
adding this to our live site, but we
can use it to start any “blank”
exercises we undertake from this
point forward.

Before we actually enter in some
Javascript to this page, a few
things to bear in mind:

1. Javascript is CASE SENSITIVE
getElementById("id");

getelementbyID("id");

STRUCTURE

Before we actually enter in some
Javascript to this page, a few
things to bear in mind:

1. Javascript is CASE SENSITIVE

2. Like other programming
languages, Javascript is written as
STATEMENTS — lines of code that
say piece by piece what you want
to do. Each statement should end
with a semicolon.

alert("Hello, world!");

STRUCTURE

Before we actually enter in some
Javascript to this page, a few
things to bear in mind:

1. Javascript is CASE SENSITIVE

2. Like other programming
languages, Javascript is written as
STATEMENTS — lines of code that
say piece by piece what you want
to do. Each statement should end
with a semicolon.

3. Javascript does not care about
space — except inside the quotes.

alert("Hello, world!");

alert("Hello, world!"
) ;

STRUCTURE

Like other languages, you can add
comments to your Javascript — in
fact, you will often find yourself
doing this, especially early on.

You can write a comment starting
the line with two slashes:

alert("Hello, world!");

//This is a comment.

STRUCTURE

WHERE TO PUT JS?
You call in the Javascript code
through the <script> tag. This can
occur anywhere in your HTML
document, but you will primarily see
script tags either in the <head>
section, which will call in the code
on page load, or else just above the
closing body tag.

WHERE TO PUT JS?
In either case, though, we will be
using external Javascript rather
than inline. That is, we will have a
separate file for our Javascript
code, which we will add to a folder
called “js”. We still use the script
tag to access this file, with the
location of the file described in the
src attribute.

SYNTAX
Today, we will look at various parts
of Javascript syntax — this means
the basic rules and principles upon
which the language is based.

This includes:

• Variables

• Conditions

• Operators

• Functions

VARIABLES
A Javascript variable can be thought of
as a container that stores data.

You create a variable by typing var,
which is part of the Javascript
vocabulary, then any word you want.

A variable name is up to you, BUT:

• It should be descriptive of the data

• Do not include any spaces

• It can be letters, numbers, can include
underscore or dollar sign, but CANNOT
begin with a number.

var year;

VARIABLES
Simply creating a variable does not
assign a value to that variable — that
must be done with additional code. So
we can create a variable called year, but
that data has no value until we assign
one. In this case, the equal sign is what
sets a value to the variable called “year.”

var year;

year = 2016;

VARIABLES
This can be combined into a single line
to tighten the code. In fact, you can
create multiple variables and assign
multiple values within a single line if you
wish, with each variable name and value
instruction separated by a comma.

var year = 2016, month =
february, day = 22;

VARIABLES
Variables can be set to any kind of data
— numbers, strings, which are letters
and words within a set of quotes, or
Boolean values, which are true/false.
They can contain more complex data,
including arrays, objects and even
functions.

var myVariable = 100;

var myVariable = "Hi!"

var myVariable = true;

CONDITIONS
Beyond declaring variables, we need to
start to set conditions — to execute
certain code depending on certain
situations. This involves various user
actions, but can also be called in with a
classic “if” statement, common to
virtually all computer programming.

The format for this includes an “if”
statement, followed by a condition
within a set of parentheses, and a set of
curly braces that tells the computer
what to do if the condition is true.

if (condition) {

//execute this code;

}

OPERATORS
Almost every statement we write is
going to need some sort of operation to
be performed on the data. Operators are
symbols we use to manipulate values.

The simplest ones are arithmetical:

+ for addition

- for subtraction

* for multiplication

/ for division

var a = 100, b = 50;

resultX = a + b;

resultY = a - b;

resultZ = a * b;

resultZZ = a / b;

OPERATORS
Remember, the equal sign is used in
programming to ASSIGN A VALUE, not to
check a value. If you want to check a
value — in other words, to check and see
if a is equal to 100, you would write a
double equal sign.

var a = 100, b = 50;

resultX = a + b;

resultY = a - b;

resultZ = a * b;

resultZZ = a / b;

if (resultZ == 5000) {

alert("Wow!");

}

OPERATORS
You can also use operators to determine
whether a value is more than or less
than a certain value:

> for greater than

< for less than

>= for greater than or equal to

<= for less than or equal to

var a = 100, b = 50;

var resultX = a * b;

if (resultX >= 5000) {

 alert ("Attsa lot!");

}

OPERATORS
There are many other operators that
make up Javascript; we will look into
these in more detail in classes to come.

++

— —

!==

**

>>

<<

||

FUNCTIONS
Functions consist of a series of
statement that perform a specific task.
A function can be called upon by a user
action in order achieve a task. This is
known as “calling” a function.

The steps that the function performs
are packaged in a code block, contained
within a set of curly braces. Unlike a
statement, a code block does not end
with a semicolon.

function sayWow() {

 var x = document.getElementById("tellme");

 x.innerHTML = "Wow!";

}

FUNCTIONS
To create a function, you declare it with
the keyword function, followed by an
identifier — the name for this is up to
you, but it is better to be descriptive of
what it will do.

To run the code within the function, you
follow the function name with a pair of
parentheses.

function sayWow() {

 var x = document.getElementById("tellme");

 x.innerHTML = "Wow!";

}

FUNCTIONS
Sometimes, a function
needs information to
perform its task. In
such a case, you
provide parameters
inside the
parentheses.

function getArea(width, height) {

 var area = width * height;

 return area;

}

var lotOne = getArea(100,200);

var lotTwo = getArea(50,125);

CHECKPOINT!
Your grade for your
own site is 30 percent
of your grade for this
class. I will out your
site through the first
checkpoint on
WEDNESDAY. Here is
what you will need to
earn 100 percent.

• index.html (home page) with image and bio

• class.html page with listing of our in-class
activities as sections, along with working links to
this pages:

cong.html, deluna,html, quiz1.html, time.html,
primary.html

• working pages and working css throughout

