
IDV460
I N T E R A C T I V E D A T A V I Z S P R I N G 1 6

UNDERSTANDING THE DOM

WHAT IS THE DOM?
When the browser loads a web page, it
creates a “model” of that page in memory.
The Document Object Model (DOM)
specifies how the browser should
structure this model using a DOM tree.

The D in DOM stands for Document — the
HTML page itself.

The O in DOM stands for Object — because
the model of your page is made of objects.

The M in DOM stands for Model — and that
is how we shall think about your HTML
page for the purpose of using scripts on it.

WHAT DOES THE DOM DO?
The DOM defines methods and properties
to access and update each object in the
model — which in turn, changes what the
user sees on the page.

The DOM states what your script can ask
the browser about the HTML page, and tell
the browser how to update the page.

DOM TREE
Let’s look at a
simple HTML
page, then
translate it into
a DOM tree.

<html>
<body>
 <header>
 <h1>IDV460</h1>
 <p>Interactive Data Viz Spring 16</p>
 </header>
 <div id="page-wrap">
 <nav>

 <li id="home" class="one">Home
 <li id="inclass" class="one">Class
 <li id="projects" class="two">Projects

 </nav>
 <main>
 <h2>About me.</h2>
 <p>Some type about me goes here.</p>
 </main>
 </div> <!-- closes page-wrap -->
</body>
</html>

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

DOM TREE
Every element, attribute and piece
of text in the HTML is represented
in the DOM tree by its own DOM
node. At the top, a document node
is added, which represents the
entire page, then the nested
elements (objects) within — the
html node and body node.

<html>
<body>
 <header>
 <h1>IDV460</h1>
 <p>Interactive Data Viz Spring 16</p>
 </header>
 <div id="page-wrap">
 <nav>

 <li id="home" class="one">Home
 <li id="inclass" class="one">Class
 <li id="projects" class="two">Projects

 </nav>
 <main>
 <h2>About me.</h2>
 <p>Some type about me goes here.</p>
 </main>
 </div> <!-- closes page-wrap -->
</body>
</html>

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

DOM TREE
From there, the header and div are
children of the body object. The div
has an attribute — for the sake of the
DOM tree, usually a class or ID —
while the header does not. An
attribute node is not a child of the
element that carries it, but 
a part of that element.

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

DOM TREE
The header has two nested objects
— an h1 and a paragraph. The div
has two children, too: the nav and
main objects. The HTML tags you
see here in blue are examples of
element nodes.

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

DOM TREE
The two tags in the main object both
contain text. Text nodes cannot have
children. A text node is a new branch
on the DOM tree, but no further
branches can come from it.

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

DOM TREE
Within the div branch of our DOM
tree, the nav has one child element —
the ul — while the main object
includes an h2 and a paragraph.

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

DOM TREE
The h2 and paragraph tags have text
nodes, while the ul has a series of list
items (li elements) that all have
attributes. Each one of them, too,
has a text node, which ends this tree.

Note that the tag
within the main paragraph
is not a child of the
paragraph’s text node, but
of its containing element.

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

<html>
<body>
 <header>
 <h1>IDV460</h1>
 <p>Interactive Data Viz Spring 16</p>
 </header>
 <div id="page-wrap">
 <nav>

 <li id="home" class="one">Home
 <li id="inclass" class="one">Class
 <li id="projects" class="two">Projects

 </nav>
 <main>
 <h2>About me.</h2>
 <p>Some type about me goes here.</p>
 </main>
 </div> <!-- closes page-wrap -->
</body>
</html>

DOM TREE
Here is how the DOM tree compares
with the HTML page.

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

WORKING WITH THE DOM TREE
You need to first access the elements of the DOM
tree before you can do something to them, and
update the page.

There are several ways to select  
elements:

<html>
<body>
 <header>
 <h1>IDV460</h1>
 <p>Interactive Data Viz Spring 16</p>
 </header>
 <div id="page-wrap">
 <nav>

 <li id="home" class="one">Home
 <li id="inclass" class="one">Class
 <li id="projects" class="two">Projects

 </nav>
 <main>
 <h2>About me.</h2>
 <p>Some type about me goes here.</p>
 </main>
 </div> <!-- closes page-wrap -->
</body>
</html>

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

WORKING WITH THE DOM TREE
You need to first access the elements of the DOM
tree before you can do something to them, and
update the page.

There are several ways to select  
elements:

document.getElementById('home');
<html>
<body>
 <header>
 <h1>IDV460</h1>
 <p>Interactive Data Viz Spring 16</p>
 </header>
 <div id="page-wrap">
 <nav>

 <li id="home" class="one">Home
 <li id="inclass" class="one">Class
 <li id="projects" class="two">Projects

 </nav>
 <main>
 <h2>About me.</h2>
 <p>Some type about me goes here.</p>
 </main>
 </div> <!-- closes page-wrap -->
</body>
</html>

This uses the value of the
element’s ID attribute, which
should be unique within the
page.

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

WORKING WITH THE DOM TREE
You need to first access the elements of the DOM
tree before you can do something to them, and
update the page.

There are several ways to select  
elements:

document.getElementById('home');
<html>
<body>
 <header>
 <h1>IDV460</h1>
 <p>Interactive Data Viz Spring 16</p>
 </header>
 <div id="page-wrap">
 <nav>

 <li id="home" class="one">Home
 <li id="inclass" class="one">Class
 <li id="projects" class="two">Projects

 </nav>
 <main>
 <h2>About me.</h2>
 <p>Some type about me goes here.</p>
 </main>
 </div> <!-- closes page-wrap -->
</body>
</html>

This selects all elements that
have the specified value for
their class attribute.

document.getElementsByClassName('one');

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

WORKING WITH THE DOM TREE
You need to first access the elements of the DOM
tree before you can do something to them, and
update the page.

There are several ways to select  
elements:

document.getElementById('home');
<html>
<body>
 <header>
 <h1>IDV460</h1>
 <p>Interactive Data Viz Spring 16</p>
 </header>
 <div id="page-wrap">
 <nav>

 <li id="home" class="one">Home
 <li id="inclass" class="one">Class
 <li id="projects" class="two">Projects

 </nav>
 <main>
 <h2>About me.</h2>
 <p>Some type about me goes here.</p>
 </main>
 </div> <!-- closes page-wrap -->
</body>
</html>

document.getElementsByClassName('one');

This selects all elements that
have the specified tag name.

document.getElementsByTagName('li');

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

WORKING WITH THE DOM TREE
Methods that find elements in the DOM tree are
called DOM queries. When you need to work with an
element more than once, you should use a variable
to store the result of your query. This is known as
“caching” the selection. (It is in fact storing the
location of the node in the DOM tree.)

var homeLink = document.getElementById('home');

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

WORKING WITH THE DOM TREE
This example selects one element, but sometimes
you may want to change a group of elements. Using
the methods getElementsByClassName or
getElementsByTagName will produce NodeLists,
even if there only one matching element in the
HTML.

var menuItems = document.getElementsByTagName('li');

This method returns three elements on our page.

<li id="home" class="one">Home
<li id="inclass" class="one">Class
<li id="projects" class="two">Projects

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

WORKING WITH THE DOM TREE
Each node is given an index  
number (that is, one that starts with zero  
rather than 1, as with an array).  
The order is the same as the order they  
appear in the HTML.

var menuItems = document.getElementsByTagName('li');

The index numbers can be used to specify just one of these elements.

<li id="home" class="one">Home
<li id="inclass" class="one">Class
<li id="projects" class="two">Projects

0
1
2

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

WORKING WITH THE DOM TREE
This piece of code would designate just the first
item among the elements on the page. The if
statement is used to make sure there is at least one
li in the NodeList.

var menuItems = document.getElementsByTagName('li');
if menuItems.length >= 1 {
firstItem = menuItem [0];
}

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

WORKING WITH THE DOM TREE
If you wanted to change all the li elements on the
page, you would have to loop through the NodeList,
no matter how many list items you have in your
document. Here, the enclosing function would
change the color of list item text.

var menuItems = document.getElementsByTagName('li');
for (var i=0; i<menuItems.length; i++) {
menuItems[i].style.color = rgb(211,255,0);
}

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

WORKING WITH THE DOM TREE
You can also select elements using CSS selectors —
either a single item (though always the first item
that matches the CSS-style selector) or a NodeList
of all the matches. Both methods take the CSS
selector as their only parameter.

var menuItems = document.querySelector('li.one');

This would just return the first element with a class of "one".

document

html

body

header

h1 p nav main

ul h2 p

text em

text

text

text

text

text

div attribute

attrli

text

attrli

text

attrli

WORKING WITH THE DOM TREE
You can also select elements using CSS selectors —
either a single item (though always the first item
that matches the CSS-style selector) or a NodeList
of all the matches. Both methods take the CSS
selector as their only parameter.

var menuItems = document.querySelector('li.one');

This would just return the first element with a class of "one".

var menuItems = document.querySelectorAll('li.one');

This would return both elements with a class of "one" as a NodeList.

EXERCISE
Today, we will experiment with the DOM tree, using it to select and
change some CSS style on a basic page. First, we will use our
template to create some basic HTML code. We will add a button
at the bottom to produce a change in color when it is clicked.

<button class="myButton" onclick="colorChange()">Change!</button>

Add a link to a new CSS style in the head, and add some
style to make the button look nifty.

<link rel="stylesheet" href="css/color.css">

Finally, add a <script> tag at the bottom of the document,
just above the closing body tag.

<script src="js/color.js"></script>

EXERCISE
We will go through each of the DOM queries we have talked about
today, and add code that will change the color of the selected
object to a random color.

First, soon after the function opens, you will add this code to
generate a random RGB color. This will use the Math object, which
has properties and methods for various mathematical functions.

(Math.floor(Math.random() * 256))

This small chunk of code will generate an integer
between 0 and 255. The numbers 0 through 255
refer to RGB color positions.

EXERCISE
To generate a random RGB value, you need to stitch together
several strings. Remember, RGB values are written like this:

rgb(233,222,40)

To create a random assortment of the three numbers between
0 and 255, you would add this code:

var hue = 'rgb(' + (Math.floor(Math.random() * 256))
+ ',' + (Math.floor(Math.random() * 256)) + ',' +
(Math.floor(Math.random() * 256)) + ')';

This random number will be stored in a variable called “hue.”

EXERCISE
Use various DOM queries to change the following:

• The color of the band with your name in it — the h2 in the header (use getElementById).

• The color of the anchor tags (use getElementsByTagName).

• The color of the button itself, and the word inside (use getElementsByClassName, and
create a second random RGB color).

• The color of the "460" in the header (use a CSS selector).

